The examples here contain more advanced content. Make sure to go through the section on defining Transforms before going through this section.
This page contains various example data transformations using Transforms Java:
The examples here are data transformations expressed in terms of files. If you want to have access to files in your transformation, you must define a low-level Transform
. This is because underlying dataset files are exposed by FoundryInput
and FoundryOutput
objects. Low-level Transforms, unlike high-level ones, expect the input(s) and output(s) to the compute function to be of type FoundryInput
and FoundryOutput
, respectively. The included examples are also low-level Transforms intended for manual registration.
This example takes in .zip
files as input. It unzips the files and then writes the files to the output FileSystem — because .zip
is not splittable, this work is done in parallel per .zip
file using Spark. If you want to parallelize decompression within a single compressed file, use a splittable file format like .bz2
.
Copied!1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
/* * (c) Copyright 2018 Palantir Technologies Inc. All rights reserved. */ package com.palantir.transforms.java.examples; import com.google.common.io.ByteStreams; import com.palantir.transforms.lang.java.api.Compute; import com.palantir.transforms.lang.java.api.FoundryInput; import com.palantir.transforms.lang.java.api.FoundryOutput; import com.palantir.transforms.lang.java.api.ReadOnlyLogicalFileSystem; import com.palantir.transforms.lang.java.api.WriteOnlyLogicalFileSystem; import com.palantir.util.syntacticpath.Paths; import java.io.IOException; import java.util.zip.ZipEntry; import java.util.zip.ZipInputStream; /** * This is an example of unzipping files in parallel using Spark. * <p> * The work is distributed to executors. */ public final class UnzipWithSpark { @Compute public void compute(FoundryInput zipFiles, FoundryOutput output) throws IOException { ReadOnlyLogicalFileSystem inputFileSystem = zipFiles.asFiles().getFileSystem(); WriteOnlyLogicalFileSystem outputFileSystem = output.getFileSystem(); inputFileSystem.filesAsDataset().foreach(portableFile -> { // "processWith" gives you the InputStream for the given input file. portableFile.processWithThenClose(stream -> { try (ZipInputStream zis = new ZipInputStream(stream)) { ZipEntry entry; // For each file in the .zip file, write it to the output file system. while ((entry = zis.getNextEntry()) != null) { outputFileSystem.writeTo( Paths.get(entry.getName()), outputStream -> ByteStreams.copy(zis, outputStream)); } return null; } catch (IOException e) { throw new RuntimeException(e); } }); }); } }
This example takes in .csv
, .gz
, and .zip
files as input. It uncompresses the files and then writes the files to the output DataFrame—this work is done in parallel using Spark.
Copied!1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
/* * (c) Copyright 2018 Palantir Technologies Inc. All rights reserved. */ package com.palantir.transforms.java.examples; import com.google.common.collect.AbstractIterator; import com.google.common.io.CharSource; import com.google.common.io.Closeables; import com.palantir.spark.binarystream.data.PortableFile; import com.palantir.transforms.lang.java.api.Compute; import com.palantir.transforms.lang.java.api.FoundryInput; import com.palantir.transforms.lang.java.api.FoundryOutput; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.Reader; import java.nio.charset.StandardCharsets; import java.util.Iterator; import java.util.zip.GZIPInputStream; import java.util.zip.ZipInputStream; import org.apache.spark.TaskContext; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Encoders; import org.apache.spark.sql.Row; import org.apache.spark.util.TaskCompletionListener; /** * This is an example expects .csv/.gz/.zip files as input. * <p> * It does the following operations in parallel over Spark: * <ol> * <li>Detects the type of the file.</li> * <li>If the file type is .gz or .zip, it uncompressed the files.</li> * <li>Infers the schema of the uncompressed .csv files.</li> * <li>Converts the dataset of .csv lines into a dataset of that schema.</li> * </ol> */ public final class UnzipWithSparkToDataset { @Compute public void compute(FoundryInput input, FoundryOutput output) { // Get a Spark dataset of input files. Dataset<PortableFile> files = input.asFiles().getFileSystem().filesAsDataset(); // Convert the dataset of input files to a dataset of .csv lines. Dataset<String> csvDataset = files.flatMap((FlatMapFunction<PortableFile, String>) portableFile -> // Get an InputStream from the current input file. portableFile.convertToIterator(inputStream -> { String fileName = portableFile.getLogicalPath().getFileName().toString(); // Detect .gz and .zip files and get a line iterator from each. if (fileName.endsWith(".gz")) { return new InputStreamCharSource(new GZIPInputStream(inputStream)).getLineIterator(); } else if (fileName.endsWith(".zip")) { return new ZipIterator(new ZipInputStream(inputStream)); } else { return new InputStreamCharSource(inputStream).getLineIterator(); } }), Encoders.STRING()); // Infers the schema and converts the dataset of .csv lines into a dataset of that schema. Dataset<Row> dataset = files .sparkSession() .read() .option("inferSchema", "true") .csv(csvDataset); output.getDataFrameWriter(dataset).write(); } /* * This ZipIterator assumes that all files within the archive are .csvs with the * same schema and belong to the same dataset. */ private static final class ZipIterator extends AbstractIterator<String> { private Iterator<String> lineIterator; private ZipInputStream zis; ZipIterator(ZipInputStream zis) throws IOException { this.zis = zis; lineIterator = new InputStreamCharSource(zis).getLineIterator(); } @Override protected String computeNext() { if (!lineIterator.hasNext()) { // If the line iterator does not have a next element, check if there is a next file. try { // Find the next file that is non empty. while (zis.getNextEntry() != null) { lineIterator = new InputStreamCharSource(zis).getLineIterator(); if (lineIterator.hasNext()) { break; } } return lineIterator.hasNext() ? lineIterator.next() : endOfData(); } catch (IOException e) { throw new RuntimeException(e); } } else { return lineIterator.next(); } } } private static final class InputStreamCharSource extends CharSource { private final Reader inputStream; private InputStreamCharSource(InputStream inputStream) { this.inputStream = new InputStreamReader(inputStream, StandardCharsets.UTF_8); } @Override public Reader openStream() throws IOException { return inputStream; } @SuppressWarnings("MustBeClosedChecker") Iterator<String> getLineIterator() { try { return super.lines().iterator(); } catch (IOException e) { throw new RuntimeException(e); } finally { if (TaskContext.get() != null) { // If running in Spark, close the stream when the task is finished. TaskContext.get().addTaskCompletionListener((TaskCompletionListener) context -> close()); } else { close(); } } } private void close() { Closeables.closeQuietly(inputStream); } } }
This example takes in .zip
files as input, and it combines all of the input dataset files into a single .zip
file. Note that the computation in this Transform is not parallelized.
Copied!1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
/* * (c) Copyright 2018 Palantir Technologies Inc. All rights reserved. */ package com.palantir.transforms.java.examples; import com.google.common.io.ByteStreams; import com.palantir.transforms.lang.java.api.Compute; import com.palantir.transforms.lang.java.api.FoundryInput; import com.palantir.transforms.lang.java.api.FoundryOutput; import com.palantir.transforms.lang.java.api.ReadOnlyLogicalFileSystem; import com.palantir.transforms.lang.java.api.WriteOnlyLogicalFileSystem; import com.palantir.util.syntacticpath.Paths; import java.util.zip.ZipEntry; import java.util.zip.ZipOutputStream; /** * This is an example of combining all files in a dataset into one big .zip file. * <p> * The work is done on a single thread, because it is difficult to run in parallel. * <p> * WARNING: In general, it's preferred to use the APIs in {@link UnzipWithSpark} and {@link UnzipWithSparkToDataset} * to take advantage of Spark. This is an example of a computation that is difficult to meaningfully parallelize, * which is why it is done using file system operations only on the driver. */ public final class ZipOnDriver { @Compute public void compute(FoundryInput zipFiles, FoundryOutput output) { ReadOnlyLogicalFileSystem inputFileSystem = zipFiles.asFiles().getFileSystem(); WriteOnlyLogicalFileSystem outputFileSystem = output.getFileSystem(); // Write to a file called "bigzip.zip" in the output dataset's file system. outputFileSystem.writeTo(Paths.get("bigzip.zip"), outputStream -> { // Wrap the OutputStream in a ZipOutputStream in order to write each file into the same .zip file. try (ZipOutputStream zipOutputStream = new ZipOutputStream(outputStream)) { // For each file in the input dataset's FileSystem, read it, mark a new entry in the // "bigzip.zip", then copy the bytes over. inputFileSystem.listAllFiles().forEach(inputPath -> { inputFileSystem.readFrom(inputPath, inputStream -> { zipOutputStream.putNextEntry(new ZipEntry(inputPath.toString())); ByteStreams.copy(inputStream, zipOutputStream); return null; }); }); } }); } }