Returns a function that computes the mean of all points sharing a timestamp for multiple input time series.
The resulting time series is a union of all timestamps for all the input time series, where each timestamp contains the means of values that exist across the input set for that timestamp.
Column name | Type | Description |
---|---|---|
timestamp | pandas.Timestamp | Timestamp of the point |
value | float | Value of the point |
This function is only applicable to numeric series.
Copied!1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
>>> series_1 = F.points( ... (0, 0.0), ... (100, 100.0), ... (140, 140.0), ... (200, 200.0), ... name="series-1" ... ) >>> series_2 = F.points( ... (100, 200.0), ... (120, 220.0), ... (130, 330.0), ... (150, 350.0), ... (160, 460.0), ... name="series-2" ... ) >>> series_1.to_pandas() timestamp value 0 1970-01-01 00:00:00.000000000 0.0 1 1970-01-01 00:00:00.000000100 100.0 2 1970-01-01 00:00:00.000000140 140.0 3 1970-01-01 00:00:00.000000200 200.0 >>> series_2.to_pandas() timestamp value 0 1970-01-01 00:00:00.000000100 200.0 1 1970-01-01 00:00:00.000000120 220.0 2 1970-01-01 00:00:00.000000130 330.0 3 1970-01-01 00:00:00.000000150 350.0 4 1970-01-01 00:00:00.000000160 460.0
Copied!1 2 3 4 5 6 7 8 9 10 11
>>> mean_series = F.mean()([series_1, series_2, series_2]) >>> mean_series.to_pandas() timestamp value 0 1970-01-01 00:00:00.000000000 0.000000 1 1970-01-01 00:00:00.000000100 166.666667 2 1970-01-01 00:00:00.000000120 220.000000 3 1970-01-01 00:00:00.000000130 330.000000 4 1970-01-01 00:00:00.000000140 140.000000 5 1970-01-01 00:00:00.000000150 350.000000 6 1970-01-01 00:00:00.000000160 460.000000 7 1970-01-01 00:00:00.000000200 200.000000