Functions

Register functions

If running in function execution mode, you must register the functions in your compute module to make them callable from elsewhere in Foundry. This page explains two different methods for manually registering a compute module function.

The compute modules SDK makes it easier to register functions by automatically inferring the schema of your function(s). If you are using the compute modules SDK, review the automatic function schema inference section below.

Register a function from the Compute Modules application

You can manually register a function for a compute module from the Functions page. Select Add function to open the Create function panel:

  1. Function name: The name of the function to be invoked. Typically, this should match the name of the function in your compute module.
  2. Inputs: The input parameter(s) to be passed as arguments to your compute module function.

Compute module function inputs are packaged into a JSON object; each input that you add corresponds to a property on the input object passed into your function. In the example below, function inputs are on the left, and the JSON object passed to the corresponding function is on the right.

An example function with arg inputs,

example_function_payload.json

Copied!
1 2 3 4 5 { "arg1": "hello", "arg2": 2, "arg3": "1969-07-20" }
  1. Output: The return type of your function.
  2. API name: The API name is the function locator that allows you call your function from other code in Foundry, such as through a TypeScript function. The compute module API format follows the structure com.<namespace>.computemodules.<MyApiName> and must comply to the following naming rules:
  • namespace: Must be all lowercase and contain no special characters.
  • MyApiName: Must be in camel case and contain no special characters.

Changing the API name will break the consumer code. Only the latest published version of the query is supported.

Once you define a function, you can switch to the Test tab to try invoking the function, and/or select Save to save the function and make it callable from Foundry.

Compute module functions are always registered with version 0.0.0. If you update the function, the function's version will be overwritten by your changes.

Register a function using JSON

You can also manually define your function schema by sending an HTTP POST request from within your compute module. Typically, you will only need to do this if you are creating your own client. For information on the HTTP request, review our POST function schema documentation.

This endpoint accepts a JSON array as the payload, where each element in the array corresponds to the specification of a function in your compute module. Our Python SDK ↗ provides a good reference on how to assemble this JSON payload.

Function type reference

Below is a table showing the mapping between function input/output types and how those types are serialized over HTTP to a compute module:

Foundry typeSerialsed over HTTP asNotes
Integerint
Bytestring
Booleanboolean
Binarystring
Datestring
TimestampintMilliseconds since epoch
Decimalstring
Floatfloat
Arrayarray (non-streaming), stream of JSON (streaming)
MapJSONKey-value store (for exmaple, Python dict, Java Map)
StructJSONCustom object type

Automatic function schema inference

Compute modules offer a streamlined way to define and register functions, enabling automatic schema inference and integration with Foundry's Compute Module application. This section provides an in-depth look at the automatic registration of functions and advanced usage scenarios, ensuring a smoother development experience.

The imported function schemas will only appear in the Compute Modules interface once your compute module is running and responsive. This means that you must deploy and run your compute module for the functions to be visible and accessible in Foundry. Review our documentation on debugging using replica status for more details.

In your compute module, you can define the schema of a function using a JSON structure directly within your code. This approach offers several benefits:

  • Centralized schema definition
  • Easy maintenance and updates
  • Automatic integration with Foundry

By making a simple POST call when your compute module starts up, the module automatically infers the schema from the endpoint call and makes it available as a function in the Computes Modules application. This allows developers to define endpoint schemas once and easily import them into Foundry.

Example: Add function schema

Consider a simple add function, where inputs are x and y (two integers) and the output is a string. The example below shows how to define the JSON schema for this function:

schemas.json

Copied!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 { "functionName": "add", "inputs": [ { "name": "x", "dataType": { "integer": {}, "type": "integer" }, "required": true, "constraints": [] }, { "name": "y", "dataType": { "integer": {}, "type": "integer" }, "required": true, "constraints": [] } ], "output": { "single": { "dataType": { "string": {}, "type": "string" } }, "type": "single" } }

Once you have defined your JSON schema, send an HTTP POST request in your app.py file to register it with Foundry:

if __name__ == "__main__":
    certPath = os.environ['CONNECTIONS_TO_OTHER_PODS_CA_PATH']
    postSchemaUri = os.environ["POST_SCHEMA_URI"]

    with open('schemas.json', 'r') as file:
        SCHEMAS = json.load(file)

    requests.post(
        postSchemaUri,
        json=SCHEMAS,
        headers={"Module-Auth-Token": moduleAuthToken, "Content-Type": "application/json"},
        verify=certPath
    )

Make sure to handle exceptions and implement proper error logging in a production environment.

Notice that the function adheres to the following constraints:

  • The schema definition function must declare the types of all of its inputs and the type of its output, using the supported Python type (see table below).
  • The schema definition of each function must declare a functionName that matches the Python function name.
Python typeFoundry typeSerialsed over HTTP asNotes
intIntegerint
strBytestring
boolBooleanboolean
bytesBinarystring
datetime.datetimeDatestring
datetime.datetimeTimestampintMilliseconds since epoch
decimal.DecimalDecimalstring
floatFloatfloat
listArrayarray (non-streaming), stream of JSON (streaming)
setArrayarray (non-streaming), stream of JSON (streaming)
dictMapJSONKey-value store (for example, Python dict, Java Map)
class/TypedDictStructJSONCustom object type
IterableArrayarray (non-streaming), stream of JSON (streaming)

Automatic function discovery with the compute module SDK

The compute module SDK includes functionality for automatic function discovery. It inspects the defined functions and their input/output types, then converts them into FunctionSpecs that can be imported as Foundry Functions without modification.

To ensure this feature works seamlessly, you should understand how type inference works within the SDK and how to correctly define input and output types. Review the following considerations:

  • The input class must be a complex type. Foundry Function specifications require the input type of a Function to be a complex type. If your function takes only a single primitive type as input, make sure to wrap that parameter in a complex type to properly infer your function schema.
  • Input type definition

✅ TypedDict as input type

Copied!
1 2 3 4 5 6 7 8 9 10 # app.py from typing import TypedDict from compute_modules.annotations import function class HelloInput(TypedDict): planet: str @function def hello(context, event: HelloInput) -> str: return "Hello " + event["planet"] + "!"

✅ dataclass as input type

Copied!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 # app.py from compute_modules.annotations import function from dataclasses import dataclass import datetime import decimal @dataclass class TypedInput: bytes_value: bytes bool_value: bool date_value: datetime.date decimal_value: decimal.Decimal float_value: float int_value: int str_value: str datetime_value: datetime.datetime other_date_value: datetime.datetime @function def typed_function(context, event: TypedInput) -> str: diff = event.other_date_value - event.datetime_value return f"The difference between the provided dates is {diff}"

✅ Regular class with both class AND constructor type hints

Copied!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 # app.py from compute_modules.annotations import function class GoodExample: some_flag: bool some_value: int def __init__(self, some_flag: bool, some_value: int) -> None: self.some_flag = some_flag self.some_value = some_value @function def typed_function(context, event: GoodExample) -> int: return event.some_value

AVOID Python class with no class type hints

Copied!
1 2 3 4 5 # app.py # This will raise an exception class BadClassNoTypeHints: def __init__(self, arg1: str, arg2: int): ...

AVOID Python class with Args in constructor

Copied!
1 2 3 4 5 6 7 8 # app.py # This will raise an exception class BadClassArgsInit: arg1: str arg2: int def __init__(self, arg1: str, arg2: int, *args): ...

AVOID Python class with Kwargs in constructor

Copied!
1 2 3 4 5 6 7 8 # app.py # This will raise an exception class BadClassKwargsInit: arg1: str arg2: int def __init__(self, arg1: str, arg2: int, **kwargs): ...
  • Streaming output: The compute module python SDK includes support for streaming output if it is any Iterable type (except dict). To enable result streaming, change @function to @function(streaming=True). You can review more details in our [SDK documentation ↗](https://github.com/palantir/python-compute-module?tab=readme-ov-file#advanced-usage-1---streaming-result). To make sure your streaming function is registered correctly, use any Iterabletype as the return type. Then the output will be registered as FoundryArray`.

If you do not set streaming=True, the result will be posted as a single JSON blob of the whole iterable. It may throw if your iterable is not able to be serialized in JSON. If you set streaming=True, the result will be posted as a stream of JSON blobs serialized from each element. Review more in our SDK documentation ↗.

✅ Regular Iterable as output type

Copied!
1 2 3 4 5 6 7 8 9 10 11 # app.py # The outputs will be registered as Foundry Array from compute_modules.annotations import function @function(streaming=True) def get_string_list(context, event) -> list[str]: return [f'string {i}' for i in range(10)] @function(streaming=True) def get_string_set(context, event) -> set[str]: return {'string 1', 'string 2', 'string 3'}

✅ Generator as output type

Copied!
1 2 3 4 5 6 7 8 9 # app.py # Generator is Iterable. The output will be registered as Foundry Array from compute_modules.annotations import function import typing @function(streaming=True) def string_generator(context, event) -> typing.Iterable[str]: for i in range(10): yield f'string {i}'

⚠️ Regular Iterable as output type but streaming not enabled

Copied!
1 2 3 4 5 6 7 # app.py # This is valid. The output will be registered as Foundry Array, but the result will not be streamed from compute_modules.annotations import function @function def get_string_list(context, event) -> list[str]: return [f'string {i}' for i in range(10)]

❌ Generator as output type but streaming not enabled

Copied!
1 2 3 4 5 6 7 8 9 10 # app.py # Generator is not JSON serializable as a whole object. Cannot be used in a non-streaming function since it serializes the whole object # The output type will be registered as Foundry Array, but it will throw when executed from compute_modules.annotations import function import typing @function def string_generator(context, event) -> typing.Iterable[str]: for i in range(10): yield f'string {i}'

Register the function

Follow the steps below to register your function:

  1. Ensure your compute module is running.
  2. Navigate to the Functions tab in the Compute Module application.
  3. You should be able to view your function in the list of detected functions.
  4. Select the function you want to register to open a pop-up window.
  5. In the window, select Import.

Use compute module functions in TypeScript functions

Prerequisites:

  • You must register your function in the Compute Module application with an API name.
  • You must have the compute module running for live preview to work.
  • You must initialize a TypeScript code repository.

Enable resource generation

Before you begin, ensure that resource generation is enabled in your Typescript code repository:

  • Open your functions.json file.
  • Set the enableResourceGeneration property to true.

Import your compute module function

To import a compute module function in TypeScript, follow the steps below:

  1. From the left panel of the Compute Modules application, find and select the Resource imports tab.
  2. Select Add, then select Query Functions to display a pop-up window to select an Ontology.
  3. Although compute modules are not tied to a specific Ontology, you must select one for the import process. Choose any Ontology that suits your use case.
  4. Search for your compute module function's API name.
  5. Select the function.
  6. Choose Confirm selection.

Rebuild your code workspace

Rebuild your code workspace from the bottom panel in the Code Workspaces application.

Import and use the function

The example below shows how to import and use a compute module function:

// index.ts
import { Function } from "@foundry/functions-api";

// API Name: com.mycustomnamespace.computemodules.Add
import { add } from "@mycustomnamespace/computemodules";

export class MyFunctions {
    @Function()
    public async myFunction(): Promise<string> {
        return await add({ x: 50, y: 50 });
    }
}

Important considerations

  • Project location: Ensure the compute module is in the same Project as your TypeScript code for live preview to work correctly.
  • Type consistency: TypeScript enforces strict type checking. Ensure the declared return type matches the actual return type of your compute module function. For example, if you declare a string return type, your registered compute module function must return a string, not a struct type.
  • Asynchronous operations: Compute module functions are typically asynchronous. Use async/await syntax for proper handling.

Since TypeScript functions go through the function-executor, only compute module functions that take less than five minutes will succeed. If the function takes longer than five minutes, it will time out.