foundryts.functions.polynomial_regression

foundryts.functions.polynomial_regression(max_degree=0, time_unit='ns', start=None, end=None)

Returns a function that computes the polynomial regression for a single time series.

Polynomial regression finds parameters of the best-fit polynomial curve of a specified degree over the points of the input time series. The polynomial is expressed as y = a0 + a1*x + a2*x^2 + ... + an*x^n, where the coefficients a0, a1, ..., an are determined by the regression.

Polynomial regression is useful when the relationship between the variables is more complex than a simple linear relationship.

  • Parameters:
    • max_degree (int , optional) – The maximum degree of the polynomial to fit (default is 0). For example, a degree of 2 fits a quadratic polynomial.
    • time_unit (str , optional) – The time unit of the coefficients, must be one of “s”, “ms”, “us”, “ns” (default is “ns”).
    • start (str | int | datetime.datetime , optional) – Starting point (inclusive) of the time series for computing the polynomial regression.
    • end (str | int | datetime.datetime , optional) – End point (exclusive) of the time series for computing the polynomial regression.
  • Returns: A function that accepts a single time series and returns parameters for the best-fit polynomial curve for the points in the time series using polynomial regression.
  • Return type: (FunctionNode) -> SummarizerNode

Dataframe schema

Column nameTypeDescription
max_bounds.first_valuefloatMaximum value of the first coefficient (a0).
max_bounds.second_valuefloatMaximum value of the second coefficient (a1).
min_bounds.first_valuefloatMinimum value of the first coefficient (a0).
min_bounds.second_valuefloatMinimum value of the second coefficient (a1).
regression_fit_function.
polynomial_regression_fit.
coefficients.coefficient
floatCoefficient value of the polynomial
regression fit.
regression_fit_function.
polynomial_regression_fit.
coefficients.degree
intDegree of the polynomial corresponding to
each coefficient.
Note

This function is only applicable to numeric series.

Examples

Copied!
1 2 3 4 5 6 7 8 9 10 >>> series = F.points( ... (10, 6.0), (20, 12.0), (30, 24.0), (40, 48.0), (50, 96.0), name="series" ... ) >>> series.to_pandas() timestamp value 0 1970-01-01 00:00:00.000000010 6.0 1 1970-01-01 00:00:00.000000020 12.0 2 1970-01-01 00:00:00.000000030 24.0 3 1970-01-01 00:00:00.000000040 48.0 4 1970-01-01 00:00:00.000000050 96.0
Copied!
1 2 3 4 5 6 7 >>> poly_regr = F.polynomial_regression(3)(series) >>> poly_regr.to_pandas() max_bounds.first_value max_bounds.second_value min_bounds.first_value min_bounds.second_value regression_fit_function.polynomial_regression_fit.coefficients.coefficient regression_fit_function.polynomial_regression_fit.coefficients.degree 0 50.0 96.0 10.0 6.0 -4.800000 0 1 50.0 96.0 10.0 6.0 1.585714 1 2 50.0 96.0 10.0 6.0 -0.066429 2 3 50.0 96.0 10.0 6.0 0.001500 3