Returns a function that performs linear regression on a single time series.
Linear regression finds the parameters of the best-fit line over points of the input time series.
Linear regression is expressed as y = Ax + B
, where A
is the slope of the line and B
is the
y-intercept. The returned function will provide the parameters A
and B
.
Linear regression is useful when you need to identify and quantify a linear trend in your time series data.
FunctionNode
) -> SummarizerNode
Column name | Type | Description |
---|---|---|
max_bounds.first_value | float | Maximum value of the slope (A) in y=Ax+B . |
max_bounds.second_value | float | Maximum value of the intercept (B) in y=Ax+B . |
min_bounds.first_value | float | Minimum value of the slope (A) in y=Ax+B . |
min_bounds.second_value | float | Minimum value of the intercept (B) in y=Ax+B . |
regression_fit_function. linear_regression_fit. slope | float | Parameter ‘A’ (slope) of the linear regression fit iny=Ax+B . |
regression_fit_function. linear_regression_fit. intercept | float | Parameter ‘B’ (intercept) of the linear regression fit iny=Ax+B . |
regression_fit_function. linear_regression_fit. statistics.rsquared | float | R-squared value indicating the goodness of fit of the linear regression. |
This function is only applicable to numeric series.
Copied!1 2 3 4 5 6 7 8 9 10
>>> series = F.points( ... (10, 6.0), (20, 12.0), (30, 24.0), (40, 48.0), (50, 96.0), name="series" ... ) >>> series.to_pandas() timestamp value 0 1970-01-01 00:00:00.000000010 6.0 1 1970-01-01 00:00:00.000000020 12.0 2 1970-01-01 00:00:00.000000030 24.0 3 1970-01-01 00:00:00.000000040 48.0 4 1970-01-01 00:00:00.000000050 96.0
Copied!1 2 3 4
>>> lin_regr = F.linear_regression()(series) >>> lin_regr.to_pandas() max_bounds.first_value max_bounds.second_value min_bounds.first_value min_bounds.second_value regression_fit_function.linear_regression_fit.intercept regression_fit_function.linear_regression_fit.slope regression_fit_function.linear_regression_fit.statistics.rsquared 0 50.0 96.0 10.0 6.0 -27.6 2.16 0.870968