Returns a function that performs exponential regression on a single time series.
Exponential regression finds the parameters of the best-fit exponential curve over points of the input time series.
The regression is expressed as y = Ae^(Bx)
, where A
is the initial value and B
is the growth rate.
The returned function will provide the parameters A
and B
.
Exponential regression is particularly useful when the data exhibits exponential growth or decay patterns.
FunctionNode
) -> SummarizerNode
Column name | Type | Description |
---|---|---|
max_bounds.first_value | float | Maximum value of the initial value (A) in y=Ae^(Bx) . |
max_bounds.second_value | float | Maximum value of the growth rate (B) in y=Ae^(Bx) . |
min_bounds.first_value | float | Minimum value of the initial value (A) in y=Ae^(Bx) . |
min_bounds.second_value | float | Minimum value of the growth rate (B) in y=Ae^(Bx) . |
regression_fit_function. exponential_regression_fit. aparameter | float | Estimated parameter ‘A’ (initial value) of the exponential regression fit in y=Ae^(Bx) . |
regression_fit_function. exponential_regression_fit. bparameter | float | Estimated parameter ‘B’ (growth rate) of the exponential regression fit in y=Ae^(Bx) . |
This function is only applicable to numeric series.
Copied!1 2 3 4 5 6 7 8 9 10
>>> series = F.points( ... (10, 6.0), (20, 12.0), (30, 24.0), (40, 48.0), (50, 96.0), name="series" ... ) >>> series.to_pandas() timestamp value 0 1970-01-01 00:00:00.000000010 6.0 1 1970-01-01 00:00:00.000000020 12.0 2 1970-01-01 00:00:00.000000030 24.0 3 1970-01-01 00:00:00.000000040 48.0 4 1970-01-01 00:00:00.000000050 96.0
Copied!1 2 3 4
>>> exponential_regr = F.exponential_regression()(series) >>> exponential_regr.to_pandas() max_bounds.first_value max_bounds.second_value min_bounds.first_value min_bounds.second_value regression_fit_function.exponential_regression_fit.aparameter regression_fit_function.exponential_regression_fit.bparameter 0 50.0 96.0 10.0 6.0 3.0 0.069315