Code examplesNotional data generationTransforms

Transforms

Python

Notional data generation

How can I create fake data in a transform?

This code uses the synthesizer library to generate a random dataset with specified columns and data types.

Copied!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 from transforms.api import transform_df, Output, configure from synthesizer import DataFrameTransformOrchestrator import pyspark.sql.functions as F ''' Transform to generate data from scratch Think about importing "synthetizer" library ! ''' ROW_SPEC = { "level_1": { "random_element": { "elements": list(range(0, 10)) } }, "level_2": { "random_element": { "elements": list(range(0, 20)) } }, "level_3": { "random_element": { "elements": list(range(0, 50)) } }, "level_4": { "random_element": { "elements": list(range(0, 100)) } }, "ThisIsFakeData": "first_name", "First_Name": "first_name", "Last_Name": "last_name", "Phone_Number": "phone_number", "Address_Contact": "address", "Birth_Date": { "date_time_between": { "start_date": "-80y", "end_date": "-3m" } }, "Title": { "random_element": { "elements": ["Mr.", "Mrs.", "Ms.", "Dr."] } }, } @transform_df( Output("/Palantir/awesome-foundry/[PipelineMocking] Dataset Generation/generated_data"), ) def function_40(ctx): # Parameters ROW_COUNT = 10_000 # Create a dataset generator orch = DataFrameTransformOrchestrator( ROW_SPEC, ROW_COUNT, ctx.spark_session ) # Generate the dataset df = orch() # Create new columns, perform operations on it ... df = df.withColumn("pk", F.concat_ws("__", "level_1", "level_2", "level_3", "level_4")) return df
  • Date submitted: 2024-03-26
  • Tags: code authoring, code repositories, data generation, unstructured, synthesizer