Code examplesFuzzy matchingTransforms
Feedback

Transforms

Python

Fuzzy matching of entity names using phonetic codes

How do I perform fuzzy matching of entity names using phonetic codes in PySpark?

This code uses PySpark to clean entity names, generate phonetic codes, and perform fuzzy matching of entity names using the Jaro similarity metric. It is useful for matching similar entity names in two datasets.

Copied!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 from pyspark.sql import functions as F from pyspark.sql import types as T from transforms.api import transform_df, Input, Output import re import jellyfish def _add_phonetic_codes(df): # Generate phonetic codes for each part of the name df = df.withColumn( "name_part", F.split("cleaned_name", " ") ).withColumn( "name_part", F.explode("name_part") ).withColumn( "phonetic_code", F.soundex("name_part") ).drop("name_part") return df @transform_df( Output(), entities2=Input(), entities1=Input(), ) def compute(sanctions, entities): # Set up UDF for cleaning text def clean_text(text): cleaned_text = re.sub(r" +", " ", re.sub(r"[./-]+", "", text)).lower() return cleaned_text clean_text_udf = F.udf(clean_text, T.StringType()) # Clean entity name entities2 = entities2.withColumn("cleaned_name", clean_text_udf(F.col("name"))) entities1 = entities1.withColumn("cleaned_name", clean_text_udf(F.col("entity_name"))) # Add phonetic codes entities2 = _add_phonetic_codes(entities2) entities1 = _add_phonetic_codes(entities1) # Fuzzy join matched_entities = entities1.join( entities2, on=["phonetic_code"], how="inner" ).select( entities1.cleaned_name.alias("cleaned_name1"), entities1.id.alias("entity_id1") entities2.cleaned_name.alias("cleaned_name2"), entities2.id.alias("entity_id2") ).drop("phonetic_code") matched_entities = matched_entities.dropDuplicates() # Set up UDF for string comparison @F.udf() def jaro_compare(name1, name2): return jellyfish.jaro_similarity(name1, name2) # Fuzzy matching matched_entities = matched_entities.withColumn( "match_score", jaro_compare("cleaned_name1", "cleaned_name2") ) matched_entities = matched_entities.filter(entities.match_score > 0.75) matched_entities = matched_entities.select("entity_id1", "entity_id2") return matched_entities
  • Date submitted: 2024-05-23
  • Tags: pyspark, fuzzy matching, phonetic codes, jaro similarity