
Copyright © 2022 Palantir Technologies Inc. and affiliates (“Palantir”). All rights reserved. The content provided herein is provided for informational
purposes only and shall not create a warranty of any kind. Any data contained herein is notional. Actual results and experiences may vary.01

Contact Us

→ palantir.com/pcl/data-protection/deletion

While privacy legislation such as the GDPR (General Data Protection Regulation) and

CCPA (California Consumer Privacy Act) highlight the importance of deleting data,

adhering to personal data deletion policies in large-scale data systems can be complex

and cumbersome. In such systems, raw data tends to quickly proliferate in original or

derivative formats, but nonetheless is required to respect deletion periods designated

by the purposes of collection. With each data transformation, potentially involving the

combination with other data, the deletion periods become more difficult to reason

about and account for.

A dependable deletion solution must find instances of sensitive data across multiple

transformations and combinations of the data. Palantir’s Foundry platform includes a

deletion capability, which we call Lineage-Aware Deletion, that aims to do exactly this

for our customers. This white paper outlines a technical description of how we have

implemented this capability, and is meant to accompany our Lineage-aware Deletion

Blog Post.

Granular Lineage-Aware Deletion in
Palantir Foundry

https://www.palantir.com/pcl/data-protection/deletion/
https://blog.palantir.com/safeguarding-privacy-in-healthcare-through-systematic-data-deletion-d3051f1c5b1a
https://blog.palantir.com/safeguarding-privacy-in-healthcare-through-systematic-data-deletion-d3051f1c5b1a

Copyright © 2022 Palantir Technologies Inc. and affiliates (“Palantir”). All rights reserved. The content provided herein is provided for informational
purposes only and shall not create a warranty of any kind. Any data contained herein is notional. Actual results and experiences may vary.02

An often overlooked consideration in the management of deletion policies is the data

modeling step that determines how data is ingested, transformed and processed.

A thoughtful approach to deletion requires proactively modeling the data such that

deletion procedures can be surgically applied at the appropriate granularity, minimizing

impact on the overall data system. Doing this at the outset, before data is integrated,

can save a lot of future complexity in managing deletion requirements. Some examples

we have observed in practice are:

→ Only ingesting data that is necessary and dropping sensitive data columns that are

not essential to the purpose of processing

→ Building data pipelines in a way that minimizes the replication of sensitive data in

original and derivative formats, so that the deletion procedure impacts fewer datasets

→ Adding relevant metadata about where sensitive data has been ingested and their

purposes of processing, such that data engineers understand the impact of the data

they are transforming

In Foundry, data ingestions can be tuned to run incrementally and at a suitable

cadence such that the additions of new data to sensitive datasets are small enough to

accommodate the desired deletion policy.

Think Deletion Before Creation:
The Importance of Data Modeling

Copyright © 2022 Palantir Technologies Inc. and affiliates (“Palantir”). All rights reserved. The content provided herein is provided for informational
purposes only and shall not create a warranty of any kind. Any data contained herein is notional. Actual results and experiences may vary.03

Mapping the Flow: Data Lineage

A typical data pipeline would involve the transformation and replication of data across

multiple steps. This sequence of how data goes from its “raw” ingested form into

subsequent “derivative” forms might also involve combination with other data. Mapping

this flow in a legible manner is what we call the lineage of the data, and we further

illustrate what this can look like with a notional example.

As data flows through the platform in this hypothetical example above, parent-child

relationships are produced between datasets. For example, the “raw” Pediatric

Patients and the Adult Patients are parent datasets of the “derived” All Patients,

which is in turn a child dataset of both of them.

In Foundry, as data moves through the platform, the platform automatically keeps track

of these parent-child relationships between datasets, which allows the whole platform

to be “lineage-aware.” This is a fundamental building block that allows users to ensure

that when it is time for COVID 19 Test Results to be deleted, they can also delete

Positive Patient Contact Information and, if we wanted, Aggregated COVID rates by

County as well.

Raw Datasets

All
Patients

Derived Datasets

Pediatric
Patients

Adult
Patients

COVID-19
Test Results

Aggregated
COVID rates

by County

Positive Patient
Contact

Information

Copyright © 2022 Palantir Technologies Inc. and affiliates (“Palantir”). All rights reserved. The content provided herein is provided for informational
purposes only and shall not create a warranty of any kind. Any data contained herein is notional. Actual results and experiences may vary.04

In the example above, COVID 19 Test Results isn’t simply a static dataset. In reality,

it would be a dynamic dataset, with new data coming regularly; as more tests are

performed, more and more data is generated and held. But is it really necessary to

store the individual granular data from testing events that happened months ago? Or

at some point does it become sufficient to store the aggregated statistics, for example

in Aggregated COVID rates by County? In the context of privacy protection, the latter

is far preferable as it requires the storage of the minimal amount of data, without

compromising the use case.

Doing this, however, requires more granular deletion — we can’t just delete all of COVID

19 Test Results. Every chunk of data that enters the platform (in Foundry, we call this

a “transaction”) needs to be on a separate deletion schedule, depending on when it

came in.

This concept can be illustrated with an example. Let’s say we wanted to keep the

actual COVID-19 related data for 3 months after it came in — after that point, it’s not

necessary to hold the granular deletion data for that long, as its only really relevant for

a fixed time period after the test was administered. Essentially, we intend to give each

“transaction” of data a “time to live” (TTL) of 3 months. Below, we see the deletion dates

for transactions of test result data that came in each day starting April 1. With a 3 month

TTL, we expect them to be deleted starting July 1, one day at a time.

Granular Deletion

COVID-19 Test Results

Delete on July 1

Delete on July 2

Delete on July 3

Delete on Today

+ 3 months

From April 1

From April 2

From April 3

From Today

Copyright © 2022 Palantir Technologies Inc. and affiliates (“Palantir”). All rights reserved. The content provided herein is provided for informational
purposes only and shall not create a warranty of any kind. Any data contained herein is notional. Actual results and experiences may vary.05

This granular level of deletion allows us to preserve the more current and relevant

portions of the data, without keeping data that we no longer need. The deletion

dates also extend to descendant datasets, for example, to Positive Patient Contact

Information, as shown below.

Granular Deletion

COVID-19 Test Results

Delete on July 1

Delete on July 2

Delete on July 3

Delete on Today

+ 3 months

From April 1

From April 2

From April 3

From Today

Positive Patient Contact Information

Delete on July 1

Delete on July 2

Delete on July 3

Delete on Today

+ 3 months

From April 1

From April 2

From April 3

From Today

This sort of granular deletion is supported in Palantir Foundry, as the platform tracks

the lineage of each of the transactions within a dataset.

Copyright © 2022 Palantir Technologies Inc. and affiliates (“Palantir”). All rights reserved. The content provided herein is provided for informational
purposes only and shall not create a warranty of any kind. Any data contained herein is notional. Actual results and experiences may vary.06

Exploring Foundry's Deletion Solution

Data Deletion System Principles

Over time, we’ve found that a working deletion solution needs to adhere to certain key

principles if it is to be successful in a data platform that has users:

1. Correctness — All data scheduled for deletion should be deleted at the appropriate

time, and data not scheduled for deletion should not be deleted.

2. Transparency — Users should be able to know when data is going to be deleted and

why it is going to be deleted.

3. Verifiability — Confirmation that data was successfully deleted, including capturing

the reasons/a trail of why it was deleted.

4. Efficiency — We don’t want to be be re-computing large-scale datasets in the

platform for a small deletion in a source dataset. Re-computing datasets, especially

large ones, takes a significant amount of compute time and therefore adds to the

overall cost of deletion.

For our purposes we’ve also explored above the ideas of lineage-awareness and

granularity — we don’t include them in the list above, as that list is meant to be generic

for any deletion solution. However, in the deletion solution in Foundry, lineage-

awareness and granularity are both important facets that we’ll continue to explore

below.

Copyright © 2022 Palantir Technologies Inc. and affiliates (“Palantir”). All rights reserved. The content provided herein is provided for informational
purposes only and shall not create a warranty of any kind. Any data contained herein is notional. Actual results and experiences may vary.07

Original "Recursive" Design &
Subsequent Complications

The initial intuition was to first design our Lineage-Aware Deletion solution by only

requiring a deletion date on raw datasets. This allows us to traverse the lineage graph

to identify datasets to be deleted. Conceptually, this represents a simple and elegant

“recursive” solution. In the example below, this would mean that we only placed

deletion dates on the raw ancestor transactions, and NOT on the descendant child

transactions. Then, on the day of deletion, Foundry would traverse the lineage arrow(s)

recursively, and a full set of resources to delete would be derived.

In the example above, on July 1, we would know we had to delete the April 1 transaction

from Dataset 1 (Raw), and then we would traverse the lineage arrows to know we had to

delete the April 1 transactions from Datasets 2 and 3. These 3 transactions, in this case,

would be our entire “deletion graph” that we would submit for deletion.

Complications

We soon realized that this wasn’t strictly always *correct*. Between the time we

derived the “deletion graph” and the time we executed the deletion on July 1, a new

piece of data, say in a new Dataset 4, could be derived from existing data in Dataset

3. This freshly derived data in Dataset 4 would not show up in our “deletion graph”,

because it didn’t exist when we were computing our deletion graph, and therefore

would not be flagged for deletion. Resolving this correctness issue would require the

system to transactionally lock down all the data in the deletion graph, such that no

new data could be created from it, a feat that is near-impossible to achieve with a

micro-service architecture.

The second thing we realized was that this design didn’t lend itself to transparency of

deletion. In order to find out what was to be deleted in the next N days, we would be

be forced to traverse the entire data graph starting from every raw dataset that had a

deletion date — an expensive affair for every such user request.

Delete on July 1

Delete on July 2

Delete on July 3

Delete on Today

+ 3 months

From April 1

From April 2

From April 3

From Today

From April 1

From April 2

From April 3

From Today

From April 1

From April 2

From April 3

From Today

Dataset 1 (Raw) Dataset 2 Dataset 3

Copyright © 2022 Palantir Technologies Inc. and affiliates (“Palantir”). All rights reserved. The content provided herein is provided for informational
purposes only and shall not create a warranty of any kind. Any data contained herein is notional. Actual results and experiences may vary.08

Updated "Declarative" Design with
Deletion Policies

We managed to improve this by switching to a “declarative” design, where every

transaction had its own deletion date through a deletion policy.

This means that when a deletion date is applied to a transaction on an ancestor

dataset, we have to trigger an asynchronous background job that eventually updates

the deletion dates of all of its descendant transactions. When an ancestor transaction

deletion date is updated, we again have to trigger an asynchronous background job that

does something similar.

Additionally, when a new descendant transaction is committed, that new transaction

needs to adopt the minimum deletion date of its parents. We show an example of this

below.

Dataset 1 (Raw)

Delete on July 1

Delete on July 2

Delete on July 3

Delete on Today

+ 3 months

From April 1

From April 2

From April 3

From Today

Dataset 2

From April 1

From April 2

From April 3

From Today

Dataset 3

From April 1

From April 2

From April 3

From Today

Delete on July 1

Delete on July 2

Delete on July 3

Delete on Today

+ 3 months

Delete on July 1

Delete on July 2

Delete on July 3

Delete on Today

+ 3 months

Dataset 1 (Raw)

Dataset 2 (Raw)

Dataset 3
Delete on July 1

Delete on July 7

Delete on July 3

Delete on July 4

min (July 1, July 3) = July 1

min (July 7, July 4) = July 4

Copyright © 2022 Palantir Technologies Inc. and affiliates (“Palantir”). All rights reserved. The content provided herein is provided for informational
purposes only and shall not create a warranty of any kind. Any data contained herein is notional. Actual results and experiences may vary.09

All the bookkeeping we have to do requires rigor to sequence and perform, but it is not

without reward. Both our problems with the recursive design — the lack of correctness

and transparency — are remediated with this design.

Now, instead of building out a “deletion graph” as in the recursive case, every

transaction has its own deletion date. Because we’re storing these dates proactively,

this allows us to answer the question, “What is going to be deleted in the next N days”

without traversing through all the resources in the platform every time a user wants

to make such a request. It also gives us stronger correctness guarantees, as we only

delete data that we’ve proactively applied a deletion date onto, rather than building the

“deletion graph” at deletion time.

Tradeoffs

Copyright © 2022 Palantir Technologies Inc. and affiliates (“Palantir”). All rights reserved. The content provided herein is provided for informational
purposes only and shall not create a warranty of any kind. Any data contained herein is notional. Actual results and experiences may vary.10

Now that we know how deletion dates flow through Foundry via lineage, we have to

know how those deletion dates come to be in the first place. This is done by having a

primitive in the platform, known as a deletion policy.

Deletion policies are applied at the dataset level (not the transaction level), and

describe a paradigm for assigning deletion dates. There are 2 types of policies:

1. Time to Live (TTL) Policy — If applied on a dataset, every transaction of data in that

dataset must be deleted some fixed amount of time after that transaction was created.

2. Fixed Deletion Date Policy — If applied on a dataset, all transactions of data will be

deleted on a fixed date specified in the policies.

Policies can be applied on any dataset, but generally are most useful on raw datasets. If

a descendant dataset has ancestors with different policies, the minimum deletion date

is evaluated for each transaction in that descendant dataset.

Override Policies

Users that have certain elevated permissions can set override policies on descendant

dataset. An override policy is a policy that essentially “severs” the influence of all

ancestor deletion policies on the transactions of that dataset. Like with any policy,

once an override policy is applied on a dataset, all descendants of that dataset are also

impacted by it.

These types of policies are quite useful when certain derived data no longer has data

that requires deletion. For example, if a downstream dataset performs an aggregation

over sensitive data, the resulting aggregated data may no longer be sensitive, and

therefore need not be subject to a stringent deletion policy.

An override dataset can also be specified with an optional superseding policy — a new

policy to subject the downstream dataset to.

Deletion Policies

Copyright © 2022 Palantir Technologies Inc. and affiliates (“Palantir”). All rights reserved. The content provided herein is provided for informational
purposes only and shall not create a warranty of any kind. Any data contained herein is notional. Actual results and experiences may vary.11

3 month TTL Policy Override Policy, Supersede

with 4 month TTL

Dataset 1 (Raw)

Delete on July 1

Delete on July 2

Delete on July 3

Delete on Today

+ 3 months

From April 1

From April 2

From April 3

From Today

Dataset 2

From April 1

From April 2

From April 3

From Today

Dataset 3

From April 1

From April 2

From April 3

From Today

Delete on Aug 1

Delete on Aug 2

Delete on Aug 3

Delete on Today

+ 4 months

Delete on Aug 1

Delete on Aug 2

Delete on Aug 3

Delete on Today

+ 4 months

Copyright © 2022 Palantir Technologies Inc. and affiliates (“Palantir”). All rights reserved. The content provided herein is provided for informational
purposes only and shall not create a warranty of any kind. Any data contained herein is notional. Actual results and experiences may vary.12

The configuration of deletion policies is typically regarded as a privileged action that

needs to be applied carefully and accountably. This is because any changes to deletion

policies can have significant consequences to the integrity of data, such as keeping

data longer than is legally required on one hand, or accidental data loss on the other

hand.

Foundry’s lineage-aware deletion solution is integrated into Foundry’s robust access

control system, which allows only specific trusted users to have the privilege of applying

policies. Additionally, a user must have an even higher level of access within this access

control system to apply override policies.

Furthermore, it is also integrated with our Checkpoints service to require individuals to

justify the configuration of deletion policies. This means that even for individuals with

the permissions to apply or remove a deletion policy, Checkpoints can require them to

justify their rationale and the justifications can be reviewed in-platform with attribution.

Safeguarding the Use of Policies

